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Adaptation, i.e., slow time variation of control parameters to achieve better performance, which is usually
estimated by some object or cost function, is investigated based on linear-response theory. Adaptive Monte
Carlo methods such as entropy~or multicanonical! sampling and nonsupervised Hebbian learning are derived
from the criterion that the cost~or gain! should be expressed in terms of~generalized! autocorrelation response
functions. Our approach also gives an approximate expression for the cooling rate in simulated annealing in
terms of heat capacity and energy diffusion.@S1063-651X~96!10409-8#

PACS number~s!: 02.70.Lq

An adaptive approach, which has been developed mainly
in some branches of engineering, such as control and opera-
tional research, is now gathering much attention from statis-
tical physics in connection with Monte Carlo methods and
learning in neural network models and so on. By adaptation
we do not mean the response to a changing environment or
the intrinsic adaptation@1#, which has no object function to
be maximized. Here it is meant specifically to express slow
time variation of system parameters in order to perform cal-
culations more efficiently for our purposes. As examples we
only mention temperature control in simulated annealing
~SA! @2#, some adaptive Monte Carlo methods@3,4#, and the
Hebbian law in neural network learning@5#. It is to be noted
that usually the adaptation process is very slow to ensure that
we could arrive at a desired~unknown! attractor with high
probability, which gives rise to the possibility of applying
linear-response theory~LRT! @6# to some adaptation and
learning problems as discussed below.

We take a system with energyE~x! at a phase pointx and
introduce for later convenience a density of statesV(E) and
the entropyS(E) defined by

V~E!5E dx d„E2E~x!…, S~E!5 lnV~E!. ~1!

First let us consider a general Metropolis Monte Carlo
method with the transition probabilityW~x→x8! from the
point x to x8, satisfying the detailed balance condition

W~x→x8!/W~x8→x!5exp@A~x!2A~x8!#. ~2!

In the Markovian time series$xn% generated byW~x→x8!,
the occurrence probability ofx is proportional to
exp@2A~x!#. Thus, if we takeA~x!5E~x!/T, with T the tem-
perature of the system, we have a canonical distribution

pc~x!5exp@2E~x!/T#/Zc , ~3!

for which the energy distributionp̃c(E) is obtained from Eq.
~1! as

p̃c~E!}E dx d„E2E~x!…e2E~x!/T5eS~E!2E/T[e2F~E,T!/T.

~4!

WhenT is small and effects of thermal noise become weak,
the time series$xn% is usually trapped in a local minimum of
E~x! for a long time@proportional to exp(DEb/T) with DEb
the energy barrier#, resulting in a nonergodic sampling. This
leads to difficulty in dealing with a first-order phase transi-
tion because the free energyF(T,E) in Eq. ~4! has a double-
well structure with a large energy barrier (DEb@T) to cross
and also an extremely slow cooling rate in the SA@2#, which
requires the limitT→0 to attain the global minimum ofE~x!.

To cope with the disadvantages of the Metropolis sam-
pling ~2! with A5E/T, a so-called entropy sampling~ES! @7#
has been proposed, which enables a direct and adaptive cal-
culation of S(E) as follows. We perform a Monte Carlo
simulation with a trial functionA0„E~x!… in Eq. ~2! and ob-
tain an energy histogramh(E). Since the equilibrium energy
distribution p̃A0(E) is proportional to exp@S(E)2A0(E)#,
the region satisfyingS(E).A0(E) is sampled more often
than the regionS(E),A0(E) and we updateA0(E) by

A1~E!5A0~E!1 lnh~E! ~5!

and continue the procedure until we have anE-independent
histogram, where ourA function is equal toS(E) up to an
additive constant@4,8#.

To derive and investigate the ES from a microscopic
viewpoint, we introduce, corresponding to the Markov pro-
cess~2!, the Langevin dynamics

dx/dt52“A„E~x!…1f~ t !, ~6!

where the random forcef(t)5[ f 1(t),...,f N(t)] satisfies the
fluctuation-dissipation relation

^ f i~ t ! f j~ t8!&52d i jd~ t2t8!. ~7!

The Fokker-Planck equation~FPE!

]p~x,t !/]t5“•@p~x,t !“A„E~x!…1“p~x,t !# ~8!
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gives the equilibrium distributionpA~x!}exp@2A„E~x!…# as
the Markov process Eq.~2! does. Thus it is possible to
implement the ES by combining the update algorithm~5!
with the Langevin sampling Eq.~6! instead of the Metropolis
one, Eq.~2!.

The FPE for the energy distribution functionp̃(E,t)
@[*dx d„E2E~x!…p~x,t!# is derived by operating*dx d„E
2E~x!… on both sides of Eq.~8!. Under the assumption that
p~x,t! depends onx through energyE~x!, we obtain

] p̃~E,t !/]t5~]/]E!@D~E!$ p̃~E,t !d~A2S!/dE

1] p̃~E,t !/]E%#[Lp̃~E,t !, ~9!

where the diffusion constantD(E) in the energy space is
defined to be the microcanonical ensemble average of
u“E~x!u2,

D~E!5E dx d„E2E~x!…u“E~x!u2Y E dx d„E2E~x!….

~10!

It is seen from Eq.~9! that the equilibrium distribution is
given by p̃A(E)}exp@2A(E)1S(E)#.

We now consider the following situation. With a trial
function A(E)5A0(E) we solve the Langevin equation~6!
to obtain the sample point$x~t i!% ( i51,...,M ) in the time
region2t0<t<0. We taket0 long so that we can consider
that the energy distribution att50, p̃~E, t50!, calculated
from $x~t i!% ( i51,...,M ) is approximately an equilibrium
one

p̃~E,t50!.exp@S~E!2A0~E!#/Z0[ p̃A0~E!. ~11!

At t50 we changeA0(E) to

A1~E!5A0~E!1dA~E! ~12!

and our problem now is how to find the small adaptation
dA(E) appropriate for our purpose. Since ES aims at the
uniform sampling in the energy space@4#, we take as an
object function the information entropy~difference!

M ~ t ![2E dE@ p̃~E,t !lnp̃~E,t !2 p̃~E,0!lnp̃~E,0!#

~13!

and study howM (t) behaves in response todA(E). Here we
regard dA(E) as a small perturbation and express the
Fokker-Planck operatorL, with A5A15A01dA in Eq. ~9!,
asL01dL, whereL0 is theL operator withA5A0 and

dL[~]/]E!D~E!dA8~E!, ~14!

where dA8(E)[ddA(E)/dE. Setting p̃(E,t)5 p̃A0(E)

1d p̃(E,t), we immediately obtaind p̃(E,t) up to a linear
response as

d p̃~E,t !5E
0

t

exp~Ls!dLp̃A0~E!, ~15!

and from Eq.~13! we have

M ~ t !5E
0

t

dŝ D~E!dA8~E!]$ lnp̃A0%~E,s!/]E& p̃A0
,

~16!

where^ & p̃A0
[*dE p̃A0(E)••• and

$ lnp̃A0%~E,s![exp@L†s# lnp̃A0~E!, ~17!

with L† defined to be adjoint to L, i.e.,
*dE f(E)Lg(E)5*dE g(E)L†f (E) for arbitrary functions
f and g @6~b!#. In order to makeM (t) large, or at least a
positive quantity,M (t) should be expressed, with some posi-
tive measurep(E), as a kind of generalized autocorrelation
function

M ~ t !5E
0

t

dsE dE p~E!G~E,s!G~E!

[E dŝ G~E,s!G~E!&p[E ds g~s! ~18!

for which g(s50)5^G2(E)&p.0. From the above the first
candidate fordA(E) is

dA~E!5e lnp̃A0~E!, ~19!

for which M (t) is expressed as Eq.~18! with p(E)
5D(E) p̃A0(E).0 ande is a small constant to control the
rate of adaptation. We could also choosedA as defined by
D(E)dA8(E)5ed lnp̃A0(E)/dE. In this casedA depends on
D(E), of which we have no knowledge in the process of
adaptation. We note that Eq.~19! ~with e51! precisely cor-
responds to the ES update~5!. Repeating the procedure~12!
and ~19!, we finally reach the situation where lnp̃A0(E)

5const @M (t)50# and from Eq.~11! this is equivalent to
A0(E)5S(E) up to an additive constant. This is also consis-
tent with the FPE~9!, which gives a uniform distribution
whenA5S.

As an example of the ES we consider a system@9# of N
~510! coupled Duffing oscillators

E~x!5(
i51

N

@xi
2/21xi

4/4#2$2B/~N21!~N22!%

3 (
i, j,k

xixjxk , ~20!

which approximately models mode dynamics for the liquid-
solid phase transition withxi denoting Fourier amplitude of a
density wave for a crystalline solids. In Fig. 1 we show how
A(E) converges toS(E) under the adaptation~5! for the
time increment of 105 Monte Carlo steps, starting from
A(E)50 @B53 in Eq. ~20!#. We see that it takes long time
beforeA(E) gets some weight in the regionE,0 and the
origin for this slow penetration of the energy distribution
acrossE50 can be traced toD(E) @Eq. ~10!#, shown in Fig.
2, which is small nearE50. From Fig. 1 a double tangent
can be drawn forB53, indicating that a first-order transition
at T5Tc occurs that is not sharp. Similiar nonsharp transi-
tion is also observed in the model of protein folding@10#.
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From the relation 1/T5(]S/]E) we haveTc.2.5. Finally, in
Fig. 3 we show the order-parameter distribution
p(X)(X[(xi /N) for T55.0, 2.5, and 1.7~B53!. This is
obtained by first calculatingS(E,X)[*dx d„E2E~x!…d„X
2X(x)… by the ~generalized! ES and then performingE in-
tegration p(X)}*dE exp@2E/T1S(E,X)#. We observe a
transition of^X& from ^X&.0 to ^X&.2.5 asT decreases from
5.0 to 1.7. ForB,2.7,p(X) has a one-peak structure for all
temperature and we have no phase transition.

Before proceeding to learning in a neural network, we
study the problem of cooling rate in the SA@2# based on
LRT and the Langevin model~6!. Here it is noted thatA(E)
is replaced byE itself and the relation~7! becomes
^ f i(t) f j (t8)&52Td i jd(t2t8). The FPE now takes the form

]p~x,t !/]t5“•@p~x,t !“E~x!1T“p~x,t !#[LFPp,
~21!

with the equilibrium distribution given by Eq.~3!. The FPE
for the energy distribution is readily derived from Eq.~21!,
as before, to have

] p̃~E,t !/]t5~]/]E!@D~E!$ p̃~E,t !]F~E,T!/]E

1T] p̃~E,t !/]E%#[Lp̃, ~22!

with F(E,T) andD(E) defined by Eqs.~4! and~10!, respec-
tively.

The situation for the SA is as follows. For timet,0 our
system is assumed to be in equilibrium at temperatureT;
thus p̃~E, t50!.exp[S(E)2E/T]/Zc . At t50 we decrease
T by dT, T(t.0)5T2dT, and we are interested in how the
average of energŷE(t)& behaves in response to annealing.
Since we assume thatdT is small we can apply LRT to
calculate^E(t)&[*dE p̃(E,t)E. Precisely following the ar-
gument that led to Eq.~16!, we readily obtain the energy
drop

u^E~ t !&2^E~0!&u5~dT/T!E
0

t

dŝ D~E!]E~E,s!/]E& p̃c,

~23!

whereE(E,s)[exp(L†s)E, with L† denoting the adjoint op-
erator of L, Eq. ~22!. It is interesting to note that since
E(E,0)5E we can express the integrand in Eq.~23! in the
form of a ~generalized! autocorrelation function
^]E(E,s)/]E]E(E,0)/]E&D(E) p̃c. Actually, with some ma-
nipulation on Eq.~23! or directly applying LRT to Eq.~21!,
we have an equivalent expression

u^E~ t !&2^E~0!&u5~dT/T!E
0

t

dŝ “E~x,s!•“E~x,0!&pc,

~238!

whereE(x,s)[exp(LFP
† s)E(x) with LFP

† an adjoint operator
of LFP in Eq. ~21!. Denoting bytR the relaxation time of the
correlation function and noting that]E~E, s50!/]E51, we
can estimate Eq.~23! approximately as

u^E~ t.tR!&2^E~0!&u.~dT/T!^D~E!& p̃ctR . ~24!

On the other hand, it is easy to calculate the average energy
at T2dT, ^E&T2dT to obtain

u^E&T2dT2^E&Tu5dT^~E2^E&T!2&T /T
25dTC~T!,

~25!

with C(T) the specific heat of the system. Equations~24!
and ~25! yield an expression for the cooling rateRc @11#,

FIG. 1. Convergence ofA(E) to S(E) with 105 Monte Carlo
steps for each adaptation~B53!. Initially A(E) is set equal to 0.

FIG. 2. Diffusion constantD(E) @Eq. ~10!# obtained from the
ES simulation~B53!.

FIG. 3. Probability distribution functionp(X) for T55.0 ~full
curve!, T52.5 ~dashed curve!, andT51.7 ~B53!.
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Rc~T![dT/tR5dT^D~E!& p̃c /@TC~T!#. ~26!

Equation~26! states that whenC becomes large, slow cool-
ing is required, as noticed by Kirkpatrick, Gelatt, and Vecchi
@2#. Also careful cooling is necessary, as noted in connection
with Figs. 1 and 2, when̂D(E)& p̃c becomes small because it
takes a long time for an excursion in the energy space. From
Fig. 4, which depictŝ D(E)& p̃c /C(T) for the model~20!
~B53! as a function ofT, it is seen that the rate has a mini-
mum Rc,min around the transition pointT5Tc . In order to
avoid trapping in an nonequilibrium state or a glass transition
we must keep the cooling rate smaller than that given by Eq.
~26!. It is to be noted that Eq.~26! gives a general but rather
rough estimate of the cooling rate because in actual SA pro-
cesses the Kramers time exp(DEb/T) plays an important
role, as stated below the line of Eq.~4!.

Finally, let us consider a network model consisting ofN
formal neurons~Ising spins!, with the Hamiltonian

E~s!52 1
2 (
i , j ~ iÞ j !

Ji j sisj . ~27!

Glauber dynamics of the system is described by the master
equation@12#

]p~s1 ,...,sN ;t !/]t52(
i

(
si8561

sisi8 f ~2si8uhi !

3p~s1 ,...,si8 ,...,sN ;t ![LGp,

~28!

where the transition probability of spini from 2si to si
under the fieldhi5( j (Þ i )Ji j sj is defined to be

f ~si uhi !5exp~hisi /T!/@exp~hi /t !1exp~2hi /T!#.
~29!

The ~canonical! equilibrium distribution functionpc is given
by

pc~s!5expS (
i
sihi /~2T! D Y Zc . ~30!

Now the situation we are interested in is as follows. At
t50 the system is in equilibrium, as described by Eq.~30!
with some interactionJi j . In order to embed a pattern
$si%5$j i% ( i51,...,N) in the network we changehi to
hi1dhi at t50 and try to find the desirable adaptationdhi
based on LRT. As in Eq.~15! we have

p~s;t !5pc~s!1E
0

t

ds exp@LGs#dLGpc~s! ~31!

anddLG is readily seen from Eq.~28! and

f ~si uhi1dhi !5 f ~si uhi !@11~dhi /T!$si2tanh~hi /T!%#

~32!

to be given by

dLGpc~s!5~2/T!(
i

dhisiQ~s!pc~s!, ~33!

where Q~s![$exp~2hisi /T!/@exp(hi /T)1exp~2hi /T!#% is
positive definite.

Intuitively one may take the overlap@12#

m~ t !5(
s
p~s;t !s•j/N[^s~ t !&•j/N ~34!

as the appropriate object function to be maximized. The re-
sponse todhi is

dm~ t !5~2/NT!E
0

t

^j•s~s!dh•s~0!&Qpc
, ~35!

with s(s)5exp@LG
†s#s as usual. From Eq.~35! we immedi-

ately notice that by setting

dh5ej or dhi5ej i ~ i51,...,N!, ~36!

we have a generalized autocorrelation function expression
for dm(t). The choice~36! is nothing but an external~con-
stant! field along the pattern. As another candidate for the
object function we can take

p~s5j;t !5^d~s2j!&. ~37!

Equation~37! means that one should increase the probability
that the system takes the configurations5j. This time let us
employ the adaptationJi j→Ji j1dJi j or

dhi5 (
j ~Þ i !

dJi j sj ~38!

and from Eqs.~37! and ~33! we have

dp~s5j;t !

5~2/T!E
0

t

dsK $exp~LG
† s!d~s2j!%(

i , j
dJi j sisj L

Qpc

.

~39!

Since in the integrands5j at s50 we are led to the Hebbian
rule @12#

FIG. 4. ^D(E)& p̃c /C(T) as a function of temperature~B53!.
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dJi j5ej ij j ~e.0! ~40!

from the condition that the integrand is positive ats50.
In this paper some problems related to the ES@4#, the SA

@2#, and learning in a neural network@12# were studied based

on LRT, which has been traditionary used to study the re-
sponse of physical systems to external fields@6#. It is hoped
that LRT could shed some light on wider problems in learn-
ing and information processing, which now gather much in-
terest from many branches of natural science.
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